

Towards new 2D nickelates with Superconducting behavior

Alain Demourgues

CNRS, Université de Bordeaux, ICMCB, UPR9048, F-33600 Pessac, France

GDR MEETICC

Matériaux, Etats ElecTronIques et Couplages non-Conventionnels

5th of November 2019, Paris

1989.	
95-197,	
pp. 1	
Ń	
No.	
Ŕ	
Vol.	
munications,	t Britain.
Con	Great
State	d in
Solid	Printe

0038-1098/89 \$3.00 + .00 Pergamon Press plc

ELUSIVE SUPERCONDUCTIVITY IN POLYCRYSTALLINE SAMPLES OF LAYERED LANTHANUM NICKELATES*

A.K. Ganguli, R. Nagarajan, G. Ranga Rao, N.Y. Vasanthacharya and C.N.R. Rao[†]

Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India

(Received 11 May 1989 by C.N.R. Rao)

 $La_{2-x}NiO_4$, $La_{2-x}Sr_xNiO_4$ and related layered nickelates have been investigated for possible presence of superconductivity. While there is clear onset of diamagnetism around 20 K in many of these nickelates, we do not, however, find any anomaly in the electrical resistivity, magnetoresistance or thermopower around 20 K. High energy spectroscopic studies show Ni to be in the 2+ oxidation state accompanied by a substantial proportion of oxygen holes.

Outline

 $\stackrel{\textbf{Foreword}}{\longrightarrow} : \text{From Ni}^{3+} (t_2^6 \text{ e}^1) \text{ to Ni}^+ (t_2^6 \text{ e}^3) \text{ perovskite}$ U (Hubbard), $W_{\pi,\sigma}$ (bandwidth), Δ (charge transfer)

Foreword : Cuprates vs Nickelates

Ni-RE hybridization and Charge Density Wawe ?

From Perovskite to Ruddelsden-Popper (n=1, 2, 3, ...) networks : towards more 2D frameworks

Towards mixed anions (O, F, S, Se) Nickelates

[AX₃] Perovskite, [A₂X₄X'₂] K₂NiF₄ and [A_nX_m] layers for stacking : Towards new 2D phases

Band diagram of RNiO₃ (Ni³⁺- $t_2^6 e^1$ - A= La, Sm)

Zaanen-Sawatsky-Allen Scheme !

<u>M-O πBonding</u>

Competitive bonds between R-O and Ni-O : (O) p_{π} orbital for Ni-O <=> (O) p_{σ} orbital for R-O

R size ↓ (acidic character î) : Covalency of R-O bond (pσ) ↑ W_{π} (*Ni-O*) ↓ <u>Ni-O-Ni Angle</u> ↓ orbital overlap (σ) ↓ W_{σ} (*Ni-O*) ↓

From *metallic behavior (LaNiO*₃) to *semiconducting behavior (SmNiO*₃)

XAS and RIXS (Ni-L₃-edge)

Ni-La and Ni-Nd Hybridization !

Electronic structure of the parent compound of superconducting infinite-layer nickelates

M. Hepting1[†], D. Li1, C. J. Jia1, H. Lu1, E. Paris2, Y. Tseng2, X. Feng1, M. Osada1, E. Been1, Y. Hikita1, Y. D. Chuang3, Z. Hussain3, K. J. Zhou4, A. Nag4, M. Garcia-Fernandez4, M. Rossi1, H. Y. Huang5, D. J. Huang5, Z. X. Shen1, T. Schmitt2, H. Y. Hwang1, B. Moritz1, J. Zaanen6, T. P. Devereaux1, and W. S. Lee1*

XAS (O-K edge) and DFT+U calculation

Electronic structure of LaNiO₂

III. Bandes d'Énergie : Surfaces de Fermi

Comment se modifient les lignes d'isoénergie dans le cas de vraies bandes ? Exemple en 2D : réseau carré plan de paramètre a

Competition between f-d transitions and Oxygen-RE charge transfer in rare earth sesquioxides

$Sm^{3+} + Ni^+ \iff Sm^{2+} + Ni^{2+}$

Destablization of Charge Density Wave ?

From K₂NiF₄ (RP, n=1, I4/mmm) to P4/nmm (O/F ordering)

From $(La_{1.6}Sr_{0.4})Ni^{+2.6}O_{4.1}$ (RP n=1, I4/mmm) to $(La_{1.6}Sr_{0.4})Ni^{+1.34}O_{3.47}$ (Immm)

FIG. 2. Schematic drawing of the oxygen defect octahedral layers in the structure of $La_{1.6}Sr_{0.4}NiO_{3.5}$. Hatched squares show the most probable orientation (70%) along the *a*-axis.

M. Crespin et al, JSSC, 1990, 84, 165-170 M. Crespin et al. JSSC, 1992, 100, 281-291 R.T. Needs and M.T. Weller J.Chem.Soc, Chem.Comm, 1995, 353-354

Fig. 1 The structures of K_2NiF_4 and Ba_2InO_3F . Ba/K large dark spheres, In/Ni small dark spheres, anions medium sized spheres. In the Ba_2InO_3F structure (right), the fluoride (light) and oxide (dark) ion sites are distinguished by shading.

From (LaSr)Ni⁺³O₄ (RP n=1, I4/mmm) to (LaSr)Ni^{+1.2}O_{3.1} (Immm)

FIG. 3. Structure of the reduced mixed nickelates " $O_{3,1}$." Oxygen vacancies are highly ordered in the *b* direction: O_2^n site occupancy is only 20%.

Observed in Sr_2CuO_3 , $Ba_2CuO_{3.3}$, Physica C, 1988, 152, 39

Figure 2. Structure models of $Ia_3Ni_2O_7$ and $La_3Ni_2O_6$ with denoted layers and structural blocks: P, percessite; RS, rock salt; IL, infinite layer; F, fluorite.

Residual Stress :

 4 Shorter La(2)-O(1) bond distance (acidic)
→ Competitive bonds effects leading to four longer La(2)-O(2) one's !
8 equal La(1)-O(2) bonds in cubic site

V.V. Poltavets, ..,and M. Greenblatt J.A.C.S, 2006, 128, 9050-9051

Figure 3. X-ray absorption spectra for La₃Ni₂O₆ and for standards.

particular, develops a dramatically down-shifted shoulder, in the 0-5 eV range, which is similar to the XAS shoulder, which

Table 1. Crystallographic Data for La₃Ni₂O₆ ^a

_							
	atom	Wyckoff position	x	у	z	10² <i>U</i> (Å)	occ.
	La1	2b	0	0	0.5	0.50(3)	1
	La2	4e	0	0	0.3170(1)	0.72(2)	1
	Ni	4e	0	0	0.0826(1)	0.69(1)	1
	O1	4d	0	0.5	0.25	1.04(3)	1
	O2	8g	0	0.5	0.0838(1)	0.97(2)	1

^{*a*} Space group: *I4/mmm* (No. 139); a = 3.9686(1) Å, c = 19.3154(6) Å; $\chi^2 = 2.3\%$, wRp = 3.2%, Rp = 1.3%.

Decrease of $4p_{\pi}(d^9)$ and $(d^{10}L)$ states pre-edge in La₄Ni^{+1.33}₃O₈ (more 3D) vs La₃Ni^{1.5+}₂O₆ (more 2D).

Figure 2. Structure models of $Ln_4Ni_3O_{10}$ and $Ln_4Ni_3O_8$ (Ln = La, Nd) with denoted layers and structural blocks: P, perovskite; RS, rock salt; IL, infinite layer; F, fluorite. The directions of Ln and Ni atoms shifts are shown by arrows.

Figure 3. X-ray absorption spectra for $Ln_4Ni_3O_8$ (Ln = La, Nd) and for standards.

V.V. Poltavets, ..., and M. Greenblatt Inorg.Chem, 2007, 47, 10887-10891

From La_2NiO_{4+x} (I4/mmm) to $La_2NiO_3F_2$ (PVDF treatment, Cccm), then La_2NiO_3F (NaH reduction, I4/mmm, T' = Nd_2CuO_4)

Wissel, K.; Heldt, J.; Groszewicz, P. B.; Dasgupta, S.; Breitzke, H.; Donzelli, M.; Waidha, A. I.; Fortes, A. D.; Rohrer, J.; Slater, P. R.; Buntkowsky, G.; Clemens, O., Topochemical Fluorination of La2NiO4+d: Unprecedented Ordering of Oxide and Fluoride Ions in La2NiO3F2. Inorg. Chem. 2018, 57 (11), 6549-6560.

Rare earth fluorosulfides : structural features

Tetragonal P4/nmm (La \rightarrow Er, Y) Cell parameters : a \approx 4 Å, c \approx 7 Å

Building principle of 2D oxyfluorochalcogenides (2002)

(2006), 18, 6121-6131

Aurivillius phases : $[Bi_2O_2]^{2+}[A_{n-1}B_nO_{3n+1}]^{2-}$

From O_h to D_{4h} (Ni³⁺/Ni²⁺) : $[Bi_2O_2]^{2+}[A_{n-1}B_nO_{2n+2}]^{2-} = (n=3) Bi_4Ni_3^{2.66+}O_{10}$?

2,2 H	$\begin{array}{c} \text{We Have } \\ \text{We Have } \\ \text{We Have } \\ \text{To TEST } \end{array}$											2 He					
0,98 Li 3	1,57 Be 4		1929 (Rules), 1954 (Nobel Prize),									2,04 2,55 3,04 3,44 3,98 B C N O F 5 6 7 8 9					Ne 10
0,93 Na 11	1,31 Mg 12		126		1902 (1			201		-117		1,61 Al 13	1,9 Si 14	2,19 P 15	2,58 S 16	3,16 CI 17	Ar 18
0,82 K	са 20	1,36 Sc 21	1.54 Ti 22	1.63 V 23	1,66 Cr 24	1,55 Mn 25	1,83 Fe 26	1,88 Co 27	1,91 Ni 28	1,9 Cu 29	1.65 Zn 30	1,81 Ga 31	2,01 Ge 32	2,18 As 33	2,55 Se 34	2,96 Br 35	Kr 36
0,82 Rb	0,95 Sr 38	1,22 ¥	1,33 Zr 40	1,6 Nb 41	2,16 Mo 42	2,1 Tc 43	2,2 Ru 44	2,28 Rh 45	2,2 Pd 46	1,93 Ag 47	1.69 Cd 48	1,78 In 49	1,96 Sn 50	2,05 Sb 51	2,1 Te 52	2,66 53	Xe
0,79 Cs	0,89 Ba	1,1 La 57	1,3 Hf 72	1,5 Ta 73	1,7 W	1,9 Re 75	2,2 Os 76	2,2 Ir 77	2,2 Pt 78	2,4 Au 79	1,9 Hg 80	1,8 TI 81	1,8 Pb 82	1,9 Bi 83	2 Po 84	2,2 At 55	Rn 86
0.7 F#	0,9 Ra 88	1,1 Ac 89	Rf 104	Db 105	Sg 106	Bh 107	Hs 108	Mt 109	Ds 110	Rg 111	Cn 112	113	114	115	116	117	118
			1,12	1,13	1,14	1,13	1,17	1,2	1,2	1,2	1,22	1,23	1,24	1,25	1.1	1,27	
			58	Pr	60	Pm	5m 62	Eu 63	Gd 64	1 D 65	Dy	67	68	69	70	71	
			1,3 Th 90	1,5 Pa 91	1.7 U 92	1,3 Np 93	1,3 Pu 94	1,3 Am 95	1,3 Cm 96	1,3 Bk 97	1,3 Cf 98	1,3 Es 99	1,3 Fm 100	1,3 Md 101	1,3 No 102	1,3 Lr 104	

Hard-Hard or Soft-Soft AB react faster leading to stronger bonds !

P4/nmm p-type (Cu+)-SC + AFM (T_N>300K) D. Berthebaud et al. Sol. Stat. Sci. 2014, **36**, 94-100

AX₃ stacking and Perovskite network

Various [A_nX_m] layers for stacking

Conclusions

 $\sum_{\pi,\sigma} Low U-Hubbard energy (~6 eV) Ni^+ (t_2^6 e^3) perovskite$ $W_{\pi,\sigma} (Bandwidth) ~ U < \Delta (CT,O-Ni), Mott-Hubbard ?$

 \checkmark Ni vs Cu : Lower O \rightarrow Ni \triangle -CT, Stronger Ni-RE Hybridization

Destablization of CDW in Sm_{1-x/3} \times Ni^{1+x}O_3?

